Recent Posts

martes, 16 de diciembre de 2008

5 - Libros de Matemáticas

El hombre que calculaba


El hombre que calculaba

Hank Tade-Mai es un viajero que retorna en su camello a Bagdad, luego de una excursión a la ciudad de Samarra. En su camino, encuentra a un hombre modestamente vestido, sentado en una piedra y exclamando en voz alta números gigantescos. El hombre que calculaba dice llamarse Beremiz Samir y cuenta que nació en Persia, donde trabajando como pastor comenzó a contar ovejas para no extraviar ninguna, siendo que a partir de entonces tomó el gusto por contar y calcular acerca de todo lo que encuentra a su paso. El viajero está maravillado con el don de este hombre y termina convenciéndolo, no sin antes sorprenderlo por su gran modestia, de ir a Bagdad para mostrar sus habilidades matemáticas y encontrar un trabajo bien pago en el gobierno del califa. Juntos, el viajero y Beremiz emprenden un largo viaje en el cual el hombre que calculaba resuelve diversos problemas, como disputas entre personas, y demuestra ser no sólo un prodigio matemático, sino también un hombre de una gran entereza moral y un excelente narrador de historias.

lunes, 15 de diciembre de 2008

Hoja de Problemas 2.1



1. Los tres condenados

Tres ladrones, que llamaremos A, B y C, fueron capturados mientras robaban en el palacio de un Gobernador despótico, y condenados a muerte por él mismo.

Antes de cumplirse la sentencia, el Gobernador se arrepintió de su severidad, y decidió indultar a uno de los tres presos. Para procurar que este beneficio recayese en el más inteligente de los tres condenados, dispuso lo siguiente:

A la vista de los presos mostró tres tiras de paño blanca y dos tiras negras. Después ordenó que a la espalda de cada preso por separado se colgase una de estas cinco tiras. Hecho esto, permitió que los presos se viesen libremente entre sí, pero que no se comunicasen. Prometió la libertad al primero que supiese acertar, con razonamiento infalible, el color de su tira.
El preso A vio que las tiras de B y C eran blancas y a los pocos segundos pidió ser llevado ante el Gobernador, quien expuso la respuesta acertada.
¿Qué fue lo que dijo A y cómo lo razonó?

2. Triquis y traques

Los triquis y los traques son dos curiosas tribus que tienen esta notable particularidad: Que los hombres triquis mienten siempre, mientras que los traques no mienten jamás. Un explorador, que se deslizaba por el río a bordo de una barca conducida por un indígena, vio en la orilla a otro indígena que por su apariencia física se adivinaba de tribu contraria a la de su barquero. -¿De qué tribu eres tú?- interrogó el explorador al hombre de la orilla.
La respuesta se hizo confusa, por la distancia, y el explorador preguntó a su barquero: -¿Qué es lo que me ha respondido? -Dice que es un traque- contestó el barquero.
Se trata ahora de saber a qué tribu pertenecía cada uno de los indígenas.

3. Un calendario con dos cubos

¿Es posible construir un calendario con dos cubos?







*** SOLUCIONES ***



1. Los tres condenados

Inmediatamente A sospechó que su tira era blanca porque en caso contrario B vería una cinta negra, la de A más una cinta blanca, la de C. Y por bruto que fuese B debería razonar así: Puesto que A la lleva negra y C no grita que está viendo dos negras (y que por tanto la suya es blanca) es que yo llevo la blanca. El hecho de que B no hubiese hecho esta deducción al instante, convenció enseguida a A de que su propia cinta era blanca. Y cómo necesitó unos segundos menos que B y que C para hacer este razonamiento (que B y C debieran haber hecho idénticamente) se demostró la mayor inteligencia de A que fue indultado.


2. Triquis y traques

La clave para averiguarlo es fijarse en que a la primera pregunta del explorador, todos deben contestar que son traques (si lo son, porque es verdad; si no lo son, para mentir). Luego el barquero reprodujo la respuesta exacta. Luego el barquero es traque y el de la orilla es triqui.

lunes, 1 de diciembre de 2008

Hoja de Problemas 1.3

Hoja de Problemas 1.1

Hoja de Problemas 1.2

1) Coloca diez soldaditos sobre una mesa de modo que haya cinco filas de cuatro soldaditos.
2) ¿Cuántos 9 se utilizan para escribir todos los números del 0 300?
3) Quita 8 pasillos de la figura que tiene 24.a) Quita 8 para que queden 5 cuadrados.b) Quita 8 para que queden 4 cuadrados.
4) El producto de las edades de tres personas es 390 ¿Cuáles son dichas edades?
5) Sitúa doce soldaditos sobre una mesa de modo que haya seis filas de cuatro soldaditos.
6) Cuatro vacas suizas y tres autóctonas dan tanta leche en cinco días como tres vacas suizas y cinco autóctonas en cuatro días. ¿Que vaca es mejor lechera, la suiza o la autóctona?
7) El primer digito de un número de seis cifras es 1. Si se mueve al otro extremo, a la derecha, manteniendo el orden del resto de las cifras, el nuevo número es tres veces el primero. ¿Cuál es el número original?
8) Un amigo le dice al otro:- Tengo tres hijas, el producto de sus edades es 36 y su suma coincide con el número de esta casa.- No puedo averiguar las edades, responde el amigo.- ¡Ah! Es cierto. La mayor toca el piano.- Ya sé las edades de tus hijas.¿Cuáles son?
9) Cambiando solo tres cifras de lugar, has de conseguir invertir el triangulo, poniendo la base arriba y el vértice abajo.
10) TRES CABALLEROS CON SUS ESCUDEROS. Tres caballeros, cada uno con su escudero, se reunieron para cruzar un río. Encontraron una barca pequeña de dos plazas. Pero surgió una dificultad: todos los escuderos se niegan a permanecer con caballeros desconocidos sin la presencia de su amo. No valieron amenazas. Los testarudos escuderos se mantuvieron en lo suyo. Las seis personas a la otra orilla cumpliendo la condición.¿Cómo lo hicieron?

1 - Enlaces de Interés

1 - Un Clásico: http://www.matematicas.net/
2 - Otro Clásico: http://divulgamat.ehu.es/

3 - El Número de Oro: http://rt000z8y.eresmas.net/El%20numero%20de%20oro.htm

4 - Matemáticas: Juegos, Diversiones y Curiosidades

Libros de matemática de ficción

El hombre que calculaba

Hank Tade-Mai es un viajero que retorna en su camello a Bagdad, luego de una excursión a la ciudad de Samarra. En su camino, encuentra a un hombre modestamente vestido, sentado en una piedra y exclamando en voz alta números gigantescos. El hombre que calculaba dice llamarse Beremiz Samir y cuenta que nació en Persia, donde trabajando como pastor comenzó a contar ovejas para no extraviar ninguna, siendo que a partir de entonces tomó el gusto por contar y calcular acerca de todo lo que encuentra a su paso.

El tío Petros y la conjetura de Goldbach

El anciano tío Petros vive retirado de la vida social y familiar, entregado al cuidado de su jardín y a la práctica del ajedrez. Su sobrino, sin embargo, descubre un día por azar que el tío Petros fue un matemático eminente, profesor en Alemania e Inglaterra, niño prodigio en esta disciplina y estudioso totalmente absorto en sus investigaciones científicas. Como irá descubriendo el sobrino, y el lector con él, la vida de Petros Papachristos ha girado durante años en torno a la famosa conjetura de Goldbach, un problema en apariencia sencillo, pero que durante más de dos siglos nadie ha conseguido resolver. En El tío Petros y la conjetura de Goldbach las matemáticas adquieren una dimensión simbólica, y los esfuerzos de un estudioso por resolver un enigma reflejan la lucha prometeica del ser humano por conquistar lo imposible.

3 - Videos Matemáticos

jueves, 13 de noviembre de 2008

Taller de Matemáticas 2 (3º BCD)


taller de matematicas FELIPE
taller de mates JUAN MA
matematicas y cia RUBEN MARTIN
matematicos ilustres MARIO TORRIJOS
taller de matematicas WLADIMIR
TALLER DE MATEMATICAS ALVARO
taller de matematicas ANCA
taller de matematicasSHISELA
taller de mates ALEJANDRO
taller de matematicas SAMUEL
taller de mates JORGE
taller de mates MARIA
taller de matematicas DAVID MORLLO
taller de mates CESAR
Taller de matematicas IONUT
taller de matematicas JOAQUIN
Taller De Matematicas CRISTIAN
taller de matematicas MIGUEL ANGEL
taller de matematicas ROGER
taller de matematicas ROY
taller de matematicas QUIAN

martes, 11 de noviembre de 2008

Taller de Matemáticas 1 (3º AE)

Tallwer de Mate

AYLEN http://tallerdematematicas-aylen.blogspot.com/
RICHARD http://tallerdematematicas-richard.blogspot.com/
JAVI http://sorti-sortitallerdematematicas.blogspot.com/
ESTEFANIA http://estefania-tallermates.blogspot.com/
SARA http://sara-tellermatessara.blogspot.com/

ESLAVI http://eslavi.blogspot.com/
TAMARA http://jennyytami.blogspot.com/
JENNYFER http://jennyvk15.blogspot.com/
GIOVANNY http://gasfvk.blogspot.com/
CARLOS http://educamadrid.blogspot.com/

WANG http://wzngzhenguo.blogspot.com/
ADRIÁN http://tallerdematesadrian.blogspot.com/
EDILSON http://edisonvk.blogspot.com/
DANI http://IESMADRIDSURDANI.blogspot.com/
CAMILO http://sematematicas.blogspot.com/


jueves, 6 de noviembre de 2008

2 - Grandes Matemáticos


Georg Cantor

(San Petersburgo, 1845-Halle, Alemania, 1918) Matemático alemán de origen ruso. El joven Cantor permaneció en Rusia junto a su familia durante once años, hasta que la delicada salud de su padre les obligó a trasladarse a Alemania. En 1862 ingresó en la Universidad de Zurich, pero tras la muerte de su padre, un año después, se trasladó a la Universidad de Berlín, donde estudió matemáticas, física y filosofía. Se doctoró en 1867 y empezó a trabajar como profesor adjunto en la Universidad de Halle.
En 1874 publicó su primer trabajo sobre teoría de conjuntos. Entre 1874 y 1897, demostró que el conjunto de los números enteros tenía el mismo número de elementos que el conjunto de los números pares, y que el número de puntos en un segmento es igual al número de puntos de una línea infinita, de un plano y de cualquier espacio. Es decir, que todos los conjuntos infinitos tienen «el mismo tamaño».
Consideró estos conjuntos como entidades completas con un número de elementos infinitos completos. Llamó a estos números infinitos completos «números transfinitos» y articuló una aritmética transfinita completa. Por este trabajo fue ascendido a profesor en 1879.

Teoría de conjuntos

La teoría de conjuntos es una división de las matemáticas que estudia los conjuntos. El primer estudio formal sobre el tema fue realizado por el matemático alemán Georg Cantor en el Siglo XIX y más tarde reformulada por Zermelo.
El concepto de conjunto es intuitivo y se podría definir como una "colección de objetos"; así, se puede hablar de un conjunto de personas, ciudades, gafas, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema
ZFC. Sin embargo, sigue siendo célebre la definición que publicó Cantor:
Se entiende por conjunto a la agrupación en un todo de objetos bien diferenciados de nuestra intuición o nuestra mente.